under the standard, contact-trip triggers can continue to be sold with nail guns or as an option.

The findings in this report are subject to at least four limitations. First, the total number of injuries from nail guns is underrepresented by NEISS because the system only counts injuries treated in EDs; however, EDs are likely to treat a high proportion of nail-gun puncture wounds and embedded nails. In addition, only the most severe injury at the time of treatment is recorded for an individual person; a single incident might have resulted in multiple injuries or more severe sequelae. Second, the identification of cases and their specific characteristics is limited by the availability of appropriate information in the ED records and subsequent reporting by the hospital records abstractors. Thus, misclassification might have occurred in describing the person who was injured (consumer versus worker), the type of fastener tool, and the injury diagnosis (foreign-body versus puncture wound). Third, the small hospital sample size resulted in large standard errors (10%–20%) that might have obscured significant differences among years. CIs for work-related injury estimates are larger than for consumer injuries because of the smaller hospital sample used for data collection. Finally, NEISS ED surveillance does not provide information about the population at risk, the amount of exposure (e.g., hours of tool use), or tool characteristics (e.g., type of nail gun or trigger mechanism). Although consumers had fewer injuries than workers during 2001–2005, if consumers had substantially fewer hours of exposure (i.e., tool use) than workers, consumer nail-gun injury rates might have been higher than those of workers.

NEISS consumer injury estimates and NEISS-Work occupational injury estimates provide a national perspective on the injuries received from nail guns and indicate how injuries from tools used in work and nonwork settings can overlap (9). Although training regarding safe work practices might reduce nail-gun injuries, use of sequential-trip triggers is likely to be more effective (6–8), particularly among consumers, who do not usually receive training in tool use. The voluntary ANSI standard only addresses availability of the sequential-trip triggers and does not address the continued use of contact-trip triggers. The ANSI standard revision is likely to decrease injuries over time as older tools with contact-trip triggers are no longer being sold or used, but perceived lack of future availability might result in the contact-trip trigger tools being retained in work settings. In addition, consumers might be unaware of the need to replace older contact-trip triggers with sequential-trip triggers. Therefore, distribution of new nail guns with sequential-trip triggers and availability in home hardware centers of kits to convert contact-trip triggers to sequential-trip triggers might help reduce the use of the more hazardous tools. Moreover, additional training material on nail-gun safety to supplement product information included with the tools should be provided at the point of sale or rental to further influence safe nail-gun use among consumers and workers.

Acknowledgments

This report is based, in part, on data contributed by T Schroeder, CPSC Division of Hazards and Injury Data Systems; and NEISS hospital ED record abstractors.

References

Update to CDC’s Sexually Transmitted Diseases Treatment Guidelines, 2006: Fluoroquinolones No Longer Recommended for Treatment of Gonococcal Infections

In the United States, gonorrhea is the second most commonly reported notifiable disease, with 339,593 cases documented in 2005 (1). Since 1993, fluoroquinolones (i.e.,
cipfoxacin, ofloxacin, or levofloxacin) have been used frequently in the treatment of gonorrhea because of their high efficacy, ready availability, and convenience as a single-dose, oral therapy. However, prevalence of fluoroquinolone resistance in *Neisseria gonorrhoeae* has been increasing and is becoming widespread in the United States, necessitating changes in treatment regimens. Beginning in 2000, fluoroquinolones were no longer recommended for gonorrhea treatment in persons who acquired their infections in Asia or the Pacific Islands (including Hawaii); in 2002, this recommendation was extended to California (2). In 2004, CDC recommended that fluoroquinolones not be used in the United States to treat gonorrhea in men who have sex with men (MSM) (3). This report, based on data from the Gonococcal Isolate Surveillance Project (GISP), summarizes data on fluoroquinolone-resistant *N. gonorrhoeae* (QRNG) in heterosexual males and in MSM throughout the United States. This report also updates CDC’s *Sexually Transmitted Diseases Treatment Guidelines, 2006* (4) regarding the treatment of infections caused by *N. gonorrhoeae*. On the basis of the most recent evidence, CDC no longer recommends the use of fluoroquinolones for the treatment of gonococcal infections and associated conditions such as pelvic inflammatory disease (PID). Consequently, only one class of drugs, the cephalosporins, is still recommended and available for the treatment of gonorrhea.

GISP is a CDC-sponsored sentinel surveillance system that has been monitoring antimicrobial susceptibilities of *N. gonorrhoeae* in the United States since 1986. Annually, GISP collects approximately 6,000 urethral gonococcal isolates from males attending 26 to 30 sexually transmitted disease (STD) clinics throughout the country and provides national data to guide treatment. QRNG isolates demonstrate ciprofloxacin minimum inhibitory concentrations (MICs) of \(\geq 0.125 \) \(\mu \)g/mL; isolates with intermediate resistance to fluoroquinolones demonstrate ciprofloxacin MICs of 0.125–0.500 \(\mu \)g/mL. GISP began susceptibility testing for ciprofloxacin in 1990. Overall, QRNG prevalence remained \(<1\%\) during 1990–2001 but increased to 2.2\% in 2002, to 4.1\% in 2003, and to 6.8\% in 2004. In 2005, of 6,199 isolates collected by GISP, 9.4\% were resistant to ciprofloxacin, and during January–June 2006, 13.3\% of 3,005 isolates collected were resistant (Figure) (5). Excluding isolates from Hawaii and California (areas that discontinued fluoroquinolone treatment in 2000 and 2002, respectively), 6.1\% and 8.6\% of isolates were QRNG in 2005 and 2006, respectively. Intermediate resistance to ciprofloxacin has remained stable, ranging from 0.4\% to 1.1\% from 1990 to 2006 (5).

FIGURE. Percentage of *Neisseria gonorrhoeae* isolates with intermediate resistance or resistance to ciprofloxacin, by year — Gonococcal Isolate Surveillance Project, United States, 1990–2006

In addition, since 2001, GISP has observed QRNG increases among isolates from MSM, and more recently, from heterosexual males. In 2001, QRNG prevalence was 1.6\% and 0.6\% among MSM and heterosexual males, respectively. The QRNG prevalence among isolates from MSM increased to 7.2\% in 2002, to 15\% in 2003, to 23.8\% in 2004, and to 29\% in 2005 (5). Among heterosexual males, the prevalence increased more slowly, from 0.9\% in 2002 to 1.5\% in 2003, to 2.9\% in 2004, and to 3.8\% in 2005 (5). Preliminary data from January–June 2006 indicate that QRNG prevalence increased to 38.3\% among MSM and 6.7\% among heterosexual males. For isolates from sites outside of California and Hawaii, QRNG prevalence was 24.3\% in MSM and 2.7\% in heterosexual males in 2005; in the first 6 months of 2006, it was 30.7\% and 5.1\%, respectively.

Available data from GISP for 2005 and preliminary data from 2006 have demonstrated that QRNG has continued to increase among heterosexual males and is present in all regions of the country (Table) (5). Several cities outside California and Hawaii have seen substantial increases in QRNG prevalence among heterosexual males from 2004 to 2006; for example, in Philadelphia, QRNG prevalence increased from 1.2\% in 2004 to 9.9\% in 2005 and to 26.6\% in 2006; and in Miami, prevalence increased from 2.1\% in 2004 to 4.5\% in 2005 and to 15.3\% in 2006.

Reported by: C del Rio, MD, Emory Univ, Atlanta, Georgia. G Hall, PhD, The Cleveland Clinic Foundation, Cleveland, Ohio. EW Hook III, MD, Univ of Alabama at Birmingham, Birmingham, Alabama. KK Holmes, MD, PhD, WLH Whittington, PhD, Univ of Washington,
Editorial Note: GISP is the only national, sentinel surveillance system that monitors emerging resistance in *N. gonorrhoeae* in the United States; with the decreasing use of culture to diagnose gonorrhea, GISP has become an increasingly important source of information on *N. gonorrhoeae* that are resistant to antimicrobials. Findings from GISP, which is conducted in publicly funded clinics and includes only male urethral isolates, might not be representative of the entire U.S. population infected with gonorrhea.

During January–June 2006, QRNG was identified in 25 out of 26 GISP sites, and increases in the prevalence of QRNG were observed among isolates from heterosexual males and MSM in most regions of the country. As a result, CDC no longer recommends fluoroquinolones for treatment of gonorrhea in the United States; similarly, CDC no longer recommends fluoroquinolones for treatment of other conditions that might be caused by *N. gonorrhoeae*, such as PID.

CDC has recommended single-dose fluoroquinolone regimens for the treatment of gonococcal infections since 1993. Although QRNG was identified as a problem in Asia in 1991 and was first identified in Hawaii in the same year, only sporadic occurrences were noted in the continental United States during the 1990s. However, since 1999, increasing resistance of *N. gonorrhoeae* to the fluoroquinolones has been observed, first in Hawaii, then in California and other Western states, then among MSM, and now in other populations and regions. CDC has changed treatment recommendations when QRNG prevalence has reached >5% in defined groups and locations, with consideration given to other factors such as the prevalence of gonorrhea, the availability of antimicrobial susceptibility data, and the costs of diagnostic and treatment options (4,6). This >5% threshold has been used by CDC and the World Health Organization so that all recommended treatments for gonorrhea can be expected to cure ≥95% of infections.

Because fluoroquinolones are no longer recommended, the options for treating gonococcal infections in the United States are limited (4) (Box). For the treatment of uncomplicated urogenital and anorectal gonorrhea, CDC now recommends a single intramuscular dose of ceftriaxone 125 mg or a single oral dose of cefixime 400 mg. However, 400-mg tablets of cefixime are not available; cefixime is only available in a suspension formulation. Some evidence suggests that a single oral dose of cefpodoxime 400 mg or cefuroxime axetil 1 g might be additional oral alternatives for the treatment of urogenital and anorectal gonorrhea (4).

Alternative parenteral single-dose regimens for urogenital and anorectal gonorrhea include ceftriaxone 125 mg or a single oral dose of cefixime 400 mg. However, 400-mg tablets of cefixime are not available; cefixime is only available in a suspension formulation. Some evidence suggests that a single oral dose of cefpodoxime 400 mg or cefuroxime axetil 1 g might be additional oral alternatives for the treatment of urogenital and anorectal gonorrhea (4).

TABLE. Prevalence of ciprofloxacin-resistant* Neisseria gonorrhoeae among heterosexual males with gonococcal urethritis, by U.S. Census region — Gonococcal Isolate Surveillance Project (GISP), United States, 2004–2006†

<table>
<thead>
<tr>
<th>Region</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>West</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albuquerque</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denver</td>
<td>4.0</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Honolulu</td>
<td>11.3</td>
<td>19.4</td>
<td>25.0</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>0.8</td>
<td>2.7</td>
<td>4.2</td>
</tr>
<tr>
<td>Long Beach</td>
<td>12.7</td>
<td>16.0</td>
<td>22.2</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>9.5</td>
<td>4.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Orange County</td>
<td>20.5</td>
<td>26.2</td>
<td>25.0</td>
</tr>
<tr>
<td>Phoenix</td>
<td>2.7</td>
<td>4.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Portland</td>
<td>8.9</td>
<td>11.5</td>
<td>10.7</td>
</tr>
<tr>
<td>San Diego</td>
<td>13.9</td>
<td>15.6</td>
<td>25.0</td>
</tr>
<tr>
<td>San Francisco</td>
<td>10.3</td>
<td>8.2</td>
<td>22.5</td>
</tr>
<tr>
<td>Seattle</td>
<td>4.6</td>
<td>4.7</td>
<td>19.2</td>
</tr>
<tr>
<td>Tripler§ (Honolulu)</td>
<td>16.7¶</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Midwest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td></td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Cincinnati</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cleveland</td>
<td></td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>Detroit</td>
<td></td>
<td>0.3</td>
<td>—</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>2.9</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Northeast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphia</td>
<td>1.2</td>
<td>9.9</td>
<td>26.6</td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>1.0</td>
<td>2.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Baltimore</td>
<td>0.7</td>
<td>1.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Birmingham</td>
<td></td>
<td>1.1</td>
<td>1.8</td>
</tr>
<tr>
<td>Dallas</td>
<td>1.5</td>
<td>0.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Greensboro</td>
<td></td>
<td>0.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Miami</td>
<td>2.1</td>
<td>4.5</td>
<td>15.3</td>
</tr>
<tr>
<td>New Orleans</td>
<td>1.7</td>
<td>7.1**</td>
<td>—</td>
</tr>
<tr>
<td>Oklahoma City</td>
<td>1.1</td>
<td>1.8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

* Demonstrating ciprofloxacin minimum inhibitory concentrations of ≥1.0 µg/mL.
† Data for 2006 are preliminary (January–June only).
§ Tripler Army Medical Center.
¶ Fewer than 10 isolates were collected.
** Because of Hurricane Katrina, isolates were collected during January–May 2005 only. GISP was restarted in October 2006.
For pharyngeal gonorrhea, CDC now recommends a single intramuscular dose of ceftriaxone 125 mg (Box); pharyngeal gonococcal infections often are asymptomatic and more difficult to eradicate than urogenital and anorectal infections (4). Spectinomycin, cefixime, cefpodoxime, and cefuroxime axetil do not appear adequate for treating pharyngeal gonococcal infections.

A single oral dose of azithromycin 2 g is effective against uncomplicated gonococcal infections, but CDC does not recommend widespread use of azithromycin because of concerns regarding rapid emergence of resistance, as evidenced by the increase in azithromycin MICs documented since 1999 in the United States and internationally (4,5,7–9). However, azithromycin might be an option for treatment of uncomplicated gonococcal infections from any site (i.e., urogenital, anorectal, and pharyngeal) in persons with documented severe allergic reactions to penicillins or cephalosporins.

Persons in whom gonococcal infection is diagnosed should be treated for possible coinfection with *Chlamydia trachomatis* with a single dose of azithromycin 1 g by mouth or with doxycycline 100 mg twice a day, by mouth for 7 days, if chlamydial infection has not been ruled out (4).

Test of cure is not recommended routinely for patients with uncomplicated gonorrhea who have been treated with recommended or alternative regimens. Persons with persistent symptoms of gonococcal infection or whose symptoms recur shortly after treatment with a recommended or alternative regimen should be reevaluated by culture for *N. gonorrhoeae*; positive isolates should undergo antimicrobial-susceptibility testing. Clinicians and laboratories should report treatment failures or resistant gonococcal isolates to CDC at 404-639-8373 through state and local public health authorities.

With fluoroquinolones no longer recommended for the treatment of gonococcal infections, only one class of drug, cephalosporins, is still recommended and available. Therefore, state and local health departments must remain vigilant for the emergence of cephalosporin resistance.

With use of nonculture tests to diagnose *N. gonorrhoeae* increasing and with local data on antimicrobial susceptibility less available, CDC strongly recommends that all state and local health department laboratories maintain or develop the capacity to perform culture (10). CDC also encourages all state and local health department laboratories to maintain the capacity to perform antimicrobial-susceptibility testing or form partnerships with experienced laboratories that can perform such testing. At a minimum, antimicrobial-susceptibility testing should be performed for ceftriaxone, spectinomycin, azithromycin, and any other regimens that are used locally for gonorrhea treatment.

Uncomplicated Gonococcal Infections of the Cervix, Urethra, and Rectum*

Recommended Regimens
- Ceftriaxone 125 mg in a single intramuscular (IM) dose
- Cefixime† 400 mg in a single oral dose

PLUS
TREATMENT FOR CHLAMYDIA IF CHLAMYDIAL INFECTION IS NOT RULED OUT

Alternative Regimens
- Spectinomycin† 2 g in a single IM dose
- Cephalosporin single-dose regimens§

Uncomplicated Gonococcal Infections of the Pharynx*

Recommended Regimens
- Ceftriaxone 125 mg in a single IM dose

PLUS
TREATMENT FOR CHLAMYDIA IF CHLAMYDIAL INFECTION IS NOT RULED OUT

Disseminated Gonococcal Infection

Pelvic Inflammatory Disease

Epididymitis

*For all adult and adolescent patients, regardless of travel history or sexual behavior. Information regarding management of these infections in patients with documented severe allergic reactions to penicillins or cephalosporins is available at http://www.cdc.gov/std/treatment.

†Not available in the United States.

§Other single-dose cephalosporin regimens that are considered alternative treatment regimens against uncomplicated urogenital and anorectal gonococcal infections include cefotaxime 500 mg IM; or cefoxitin 2 g IM, administered with probenecid 1 g orally; or cefotaxime 500 mg IM. Some evidence indicates that cefpodoxime 400 mg and cefuroxime axetil 1 g might be oral alternatives.
Acknowledgments

This report is based, in part, on contributions by J Thomas, T Sullivan, Emory Univ, Atlanta, Georgia; LJ Doyle, The Cleveland Clinic Foundation, Cleveland, Ohio; CJ Lenderman, P Dixon, Univ of Alabama at Birmingham, Birmingham, Alabama; K Winterscheid, Univ of Washington, Seattle, Washington; JM Ehret, Univ of Colorado Health Sciences Center, Denver, Colorado; and M Grabenstein, S Bowers, K Pettus, M Parekh, J Knapp, Laboratory Reference and Research Br, Div of Sexually Transmitted Diseases Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, CDC.

References

Foodborne illnesses are a substantial health burden in the United States (1). The Foodborne Diseases Active Surveillance Network (FoodNet) of CDC’s Emerging Infections Program collects data from 10 U.S. states* regarding diseases caused by enteric pathogens transmitted commonly through food. FoodNet quantifies and monitors the incidence of these infections by conducting active, population-based surveillance for laboratory-confirmed illnesses (1). This report describes preliminary surveillance data for 2006 and compares them with baseline data from the period 1996–1998. Incidence of infections caused by Campylobacter, Listeria, Shigella, and Yersinia has declined since the baseline period. Incidence of infections caused by Shiga toxin-producing Escherichia coli O157 (STEC O157) and Salmonella, however, did not decrease significantly, and Vibrio infections have increased, indicating that further measures are needed to prevent foodborne illness and achieve national health objectives.

In 1996, FoodNet began active, population-based surveillance for laboratory-confirmed cases of infection caused by Campylobacter, Listeria, Salmonella, STEC O157, Shigella, Vibrio, and Yersinia. FoodNet personnel ascertain cases through contact with all clinical laboratories serving their surveillance areas. FoodNet added surveillance for cases of Cryptosporidium and Cyclospora infection in 1997 and STEC non-O157 infection in 2000. In 2004, FoodNet began collecting data on which laboratory-confirmed infections were associated with outbreaks.

Hemolytic uremic syndrome (HUS) surveillance, which began in 2000, is conducted in nine states through a network of pediatric nephrologists and infection-control practitioners and is validated with a review of hospital discharge data. Because of the length of time required for review of hospital records, this report contains preliminary HUS data for 2005.

During 1996–2006, the FoodNet surveillance population increased from 14.2 million persons (5% of the U.S. population) in five states to 44.9 million persons (15% of the U.S. population) in 10 states. Preliminary incidence for 2006 was calculated by dividing the number of laboratory-confirmed infections by 2005 population estimates. Final incidence for 2006 will be reported when 2006 population estimates are available from the U.S. Census Bureau. In previous reports, the final incidence has been similar to the preliminary incidence.

Surveillance

In 2006, a total of 17,252 laboratory-confirmed cases of infections in FoodNet surveillance areas were identified:

* Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, Tennessee, and selected counties in California, Colorado, and New York.